Abstract
Using a wave packet method, state-to-state inelastic transition probabilities and initial state specified total reaction probabilities are calculated for the title system (J=0) on a recent ab initio potential energy surface. Both the inelastic and reactive scattering probabilities are found to be strongly oscillatory, indicative of the involvement of long-lived resonances that are supported by a deep CH2 well. The oscillation becomes less pronounced at higher collision energies and with internal excitation of the reactant molecule. The reaction from the (νi=0, ji=0) initial state is clearly dominated by the insertion pathway, and this dominance is largely unaffected by the excitation of the reactant rotation or vibration. In addition, low-lying vibrational states of CH2 have been determined and compared with spectroscopic data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have