Abstract

Full three-dimensional time-dependent quantum wave-pack calculations have been carried out for the F+HCl and F+DCl reactions on a many-body expansion of the ground 2A′HClF potential energy surface. The calculated energy-dependence of reaction probability exhibits oscillating structure in the F+HCl reaction but not in the F+DCl system. The effects of initial state excitation on the total reaction probabilities as a function of collision energy are investigated for reactions from various initial vibrational and rotational states of HCl and DCl. Our results show that reagent vibrational and/or rotational excitation can generally lead to an increase in reaction probability at low collision energy and a slight decrease at relatively high collision energy. Thermal rate constants for the title reactions are calculated and they are in generally good agreement with experimental measurement. Investigation of steric effects for the reactions indicates that the H (or D) side of HCl (or DCl) molecule is only slightly favored for reactive attack and reaction proceeds from almost all attack angles. The present results indicate that the H/D kinetic isotope effect should not be totally neglected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.