Abstract
Quantum transport in disordered magnetic fields is investigated numerically in two-dimensional systems. In particular, the case where the mean and the fluctuation of disordered magnetic fields are of the same order is considered. It is found that in the limit of weak disorder the conductivity exhibits a qualitatively different behavior from that in the conventional random magnetic fields with zero mean. The conductivity is estimated by the equation of motion method and by the two-terminal Landauer formula. It is demonstrated that the conductance stays on the order of $e^2/h$ even in the weak disorder limit. The present behavior can be interpreted in terms of the Drude formula. The Shubnikov-de Haas oscillation is also observed in the weak disorder regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.