Abstract

Quantum transport in inhomogeneous magnetic fields is investigated numerically in two-dimensional systems using the equation of motion method. In particular, the diffusion of electrons in random magnetic fields in the presence of additional weak uniform magnetic fields is examined. It is found that the conductivity is strongly suppressed by the additional uniform magnetic field and saturates when the uniform magnetic field becomes on the order of the fluctuation of the random magnetic field. The value of the conductivity at this saturation is found to be insensitive to the magnitude of the fluctuation of the random field. The effect of random potential on the magnetoconductance is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.