Abstract

We develop a novel approach to phase transitions in quantum spin models based on a relation to their classical counterparts. Explicitly, we show that whenever chessboard estimates can be used to prove a phase transition in the classical model, the corresponding quantum model will have a similar phase transition, provided the inverse temperature $\beta$ and the magnitude of the quantum spins $\CalS$ satisfy $\beta\ll\sqrt\CalS$. From the quantum system we require that it is reflection positive and that it has a meaningful classical limit; the core technical estimate may be described as an extension of the Berezin-Lieb inequalities down to the level of matrix elements. The general theory is applied to prove phase transitions in various quantum spin systems with $\CalS\gg1$. The most notable examples are the quantum orbital-compass model on $\Z^2$ and the quantum 120-degree model on $\Z^3$ which are shown to exhibit symmetry breaking at low-temperatures despite the infinite degeneracy of their (classical) ground state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.