Abstract

We investigate the existence and the properties of fully separable (fully factorized) ground states in quantum spin systems. Exploiting techniques of quantum information and entanglement theory, we extend a recently introduced method and construct a general, self-contained theory of ground state factorization in frustration-free quantum spin models defined on lattices in any spatial dimension and for interactions of arbitrary range. We show that, quite generally, nonexactly solvable translationally invariant models in presence of an external uniform magnetic field can admit exact, fully factorized ground state solutions. Unentangled ground states occur at finite values of the Hamiltonian parameters satisfying well-defined balancing conditions between the applied field and the interaction strengths. These conditions are analytically determined together with the type of magnetic orderings compatible with factorization and the corresponding values of the fundamental observables such as energy and magnetization. The method is applied to a series of examples of increasing complexity, including translationally invariant models with short, long, and infinite ranges of interaction, as well as systems with spatial anisotropies, in lower and higher dimensions. We also illustrate how the general method, besides yielding a large series of exact results for complex models in any dimension, recovers, as particular cases, the results previously achieved on simple models in low dimensions exploiting direct methods based on factorized mean-field ansatz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.