Abstract
We introduce the quantum quincunx, which physically demonstrates the quantum walk and is analogous to Galton's quincunx for demonstrating the random walk. In contradistinction to the theoretical studies of quantum walks over orthogonal lattice states, we introduce quantum walks over nonorthogonal lattice states (specifically, coherent states on a circle) to demonstrate that the key features of a quantum walk are observable albeit for strict parameter ranges. A quantum quincunx may be realized with current cavity quantum electrodynamics capabilities, and precise control over decoherence in such experiments allows a remarkable decrease in the position noise, or spread, with increasing decoherence.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have