Abstract

Quantum walks on graphs are ubiquitous in quantum computing finding a myriad of applications. Likewise, random walks on graphs are a fundamental building block for a large number of algorithms with diverse applications. While the relationship between quantum and random walks has been recently discussed in specific scenarios, this work establishes a formal equivalence between the two processes on arbitrary finite graphs and general conditions for shift and coin operators. It requires empowering random walks with time heterogeneity, where the transition probability of the walker is non-uniform and time dependent. The equivalence is obtained by equating the probability of measuring the quantum walk on a given node of the graph and the probability that the random walk is at that same node, for all nodes and time steps. The first result establishes procedure for a stochastic matrix sequence to induce a random walk that yields the exact same vertex probability distribution sequence of any given quantum walk, including the scenario with multiple interfering walkers. The second result establishes a similar procedure in the opposite direction. Given any random walk, a time-dependent quantum walk with the exact same vertex probability distribution is constructed. Interestingly, the matrices constructed by the first procedure allows for a different simulation approach for quantum walks where node samples respect neighbor locality and convergence is guaranteed by the law of large numbers, enabling efficient (polynomial-time) sampling of quantum graph trajectories. Furthermore, the complexity of constructing this sequence of matrices is discussed in the general case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.