Abstract

We have researched the influence of pulsed magnetic fields up to 32 T on the magneto-resistance of thick films (50 Mk) of YBa2Cu3O x and YBa2Cu3O x (5 % Ag-doped) that were produced from synthesized powders. (Figs. 1–9): concentrate with 6.85–6.9 % O2 and a tail fraction 6.5–6.6 % O2.We observed a linear plot at currents of more than 1 mA at 77 K in YBa2Cu3O x (5 % Ag-doped) at B>5 T and in the concentrate YBa2Cu3O x samples with I=1 mA, T=68.2 K. Pulsed magnetic fields up to 32 T, at I=1 mA had practically no influence on the value of the magneto-resistance in the concentrate YBa2Cu3O x specimens at T=57.9 K and up to 17 T for YBa2Cu3O x (5 % Ag) at 77 K (Meissner effect). However, for B>17 T, YBa2Cu3O x (5 % Ag) at 77 K demonstrates a tendency toward lower resistance.In the presence to 10 pulses in a cyclic pulsed magnetic field of 32 T, there is a sharp change of magnetic properties of an HTSC that can lead to nontrivial changes in the transition temperature, due to the strong mechanic stresses, sharp change value structure, and because one of the phases becomes superconducting (Figs. 3A, 3B). The behavior of the magnetoresistance of S-N-S contacts in pulsed magnetic fields is described via the system’s parallel resistance, R n , and the inductance, L S-N-S.Analysis of microscopic models of quantum phase transitions was made in a granular superconductor in an attempt to explain the results on the studied HTSC-films and to give a physical interpretation to the deduced parameters of some experiments on the basis of “spin (vortex) glass” (vortex ice).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.