Abstract
A detailed analysis of the influence of Rydberg states to the behavior of GPS satellite signals in the D and E atmospheric layers has been carried out. It is demonstrated that these states are the main reason for the GPS signal distortion. It is shown that the behavior of satellite signals is associated with the spectral characteristics of the UHF radiation of the Rydberg states depending on the geomagnetic conditions of ionosphere. The foundations of the quantum theory of distortion and delay of GPS satellite signal propagation through D and E atmospheric layers are analyzed and expounded. The problem reduces to the resonant scattering of photons, moving in the electromagnetic field of the signal, to the Rydberg complexes populated in a two-temperature non-equilibrium plasma. The processes of creation of additional photons because of stimulated emission and resonance scattering of photons are considered. In the present work, the quantum theory of the propagation of a satellite signal in the Earth’s upper atmosphere, firstly earlier proposed by the same authors, is described in detail. The general problems of the theory and possible theoretical and applied consequences are discussed. It is explained that two main processes occurring here, are directly related to the resonant quantum properties of the propagation medium. The first process leads to a direct increase in the power of the received signal, and second—to a shift in the signal carrier frequency and the time delay of its propagation. The main reasons of the processes are scattering of the Rydberg electron by the ion core and presence of the neutral medium molecule in the intermediate autoionization states of the composite system populated by the strong non-adiabatic coupling of electron and nuclear motions. The main purposes of our investigation are the physical justification of the formation of parameters and using the quantum dynamics of the electron behavior in the intermediate state of the Rydberg complex A**M and the estimation of the quantities of and in the elementary act of elastic (Rayleigh) photon scattering.
Highlights
The GPS system is employed as a highly important element of the global information infrastructure [1]
It is shown that the behavior of satellite signals is associated with the spectral characteristics of the ultrahigh frequency (UHF) radiation of the Rydberg states depending on the geomagnetic conditions of ionosphere
It should be noted that up to the present day, empirical Equation (1), which was obtained as a result of statistical processing of the received signals under normal geomagnetic conditions, is used in the GNSS positioning satellite systems for calculating the delay time of a signal
Summary
The GPS system is employed as a highly important element of the global information infrastructure [1]. The results of investigations indicate that the solar activity disturbances are an important factor affecting the quality of GPS signal Positioning errors in such periods can reach hundreds of meters at the Earth’s surface that is high significant practically in all GPS applications. The first process leads to an increase of the power of the received signal, and second provides a shift in the signal carrier frequency ∆ν and the time delay ∆τ of its propagation This is due to the scattering of the Rydberg electron moving in the Rydberg complex A**M on the ionic molecular core and the neutral molecule of the medium M in the intermediate autoionization states owing to the compound system populating by a strong nonadiabatic coupling of electron and nuclear motions. The stages of the further construction of the general theory are formulated and discussed
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.