Abstract

The foundations of the quantum theory of distortion and delay of GPS satellite signal passing through D and E atmospheric layers are expound. The problem reduces to the resonant scattering of photons moving in the electromagnetic field of the signal on Rydberg complexes populated in a two-temperature nonequilibrium plasma. The processes of creation of additional photons as a result of stimulated emission and resonance scattering of photons are considered. In the present work, the quantum theory of the propagation of a satellite signal in the upper atmosphere of the Earth was proposed for the first time. The general questions of the theory and possible consequences are discussed. It is shown that the processes occurring here are directly related to the resonant quantum properties of the medium propagation. The first process leads to a direct increase in the power of the received signal, and the second to a shift in the signal carrier frequency and the time delay of its propagation. This occurs because of the scattering of the Rydberg electron by the ion core and the neutral medium molecule in the intermediate autoionization states of the composite system populated by the strong non-adiabatic coupling of electron and nuclear motions. Determination of the relationship between the frequency shift Δν and delay time Δτ of a satellite signal with quantum dynamics inside the Rydberg complex А**М is the general purpose of this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.