Abstract
Subduction plays a fundamental role in plate tectonics and is a significant factor in modifying the structure and topography of the Earth. It is driven by convection forces that change over a >100 Myr time scale. However, when an oceanic plateau approaches, it plugs the subduction, and causes slab necking and tearing. This abrupt change may trigger a series of geodynamic (tectonic, volcanic) and sedimentary responses recorded across the convergence boundary and its surrounding regions by synchronous structural modifications. We suggest that a large enough triggering event may lead to a ripple tectonic effect that propagates outwards while speeding up the yielding of localized stress states that otherwise would not reach their threshold. The ripple effect facilitates tectonic, volcanic, and structural events worldwide that are seemingly unrelated. When the world’s largest oceanic plateau, Ontong Java Plateau (OJP), choked the Pacific-Australian convergence zone at ~6 Myr ago, it induced kinematic modifications throughout the Pacific region and along its plate margins. Other, seemingly unrelated, short-lived modifications were recorded worldwide during that time window. These modifications changed the rotation of the entire Pacific plate, which occupies ~20% of the Earth’s surface. In addition, the Scotia Sea spreading stopped, global volcanism increased, the Strait of Gibraltar closed, and the Mediterranean Sea dried up and induced the Messinian salinity crisis. In this paper, we attribute these and many other synchronous events to a new “ripple tectonics” mechanism. We suggest that the OJPincipient collision triggered the Miocene-Pliocene transition. Similarly, we suggest that innovative GPS-based studies conducted today may seek the connectivity between tectonic, seismic, and volcanic events worldwide.
Highlights
The evolution of the Earth system is dictated mostly by tectonic and volcanic processes that occur throughout the geological history
We suggest that a large enough triggering event may lead to a ripple tectonic effect that propagates outwards while speeding up the yielding of localized stress states that otherwise would not reach their threshold
We suggest that the OJPincipient collision triggered the Miocene-Pliocene transition
Summary
The evolution of the Earth system is dictated mostly by tectonic and volcanic processes that occur throughout the geological history. These processes take place through events that reshape the Earth lithosphere both at shallow and deep levels and facilitate the occurrence of subsequent tectonic and volcanic events such as ocean opening and closing, periods and regions with extensive seismicity, erosion and sedimentation variations and, in a global perspective, drive the climatic changes. Our new concept links together numerous tectonic and volcanic events with global distribution to a single cause—the disruption of subduction—is presented as a “ripple tectonics” concept in order to inspire a better understanding of the causality between tectonic and volcanic events worldwide and throughout the Earth’s geologic history. We hope that the new concept will inspire innovative GPS-based studies that will seek the connectivity between tectonic, seismic, and volcanic events worldwide
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.