Abstract

To guarantee the security of quantum key distribution (QKD), security proofs of QKD protocols have assumptions on the devices. Commonly used assumptions are, for example, each random bit information chosen by a sender to be precisely encoded on an optical emitted pulse and the photon-number probability distribution of the pulse to be exactly known. These typical assumptions imposed on light sources such as the above two are rather strong and would be hard to verify in practical QKD systems. The goal of the paper is to replace those strong assumptions on the light sources with weaker ones. In this paper, we adopt the differential-phase-shift (DPS) QKD protocol and drastically mitigate the requirements on light sources, while for the measurement unit, trusted and photon-number-resolving detectors are assumed. Specifically, we only assume the independence among emitted pulses, the independence of the vacuum emission probability from a chosen bit, and upper bounds on the tail distribution function of the total photon number in a single block of pulses for single, two and three photons. Remarkably, no other detailed characterizations, such as the amount of phase modulation, are required. Our security proof significantly relaxes demands for light sources, which paves a route to guarantee implementation security with simple verification of the devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.