Abstract
We give a simple recipe for translating walks on Cayley graphs of a group G into a quantum operation on any irrep of G. Most properties of the classical walk carry over to the quantum operation: degree becomes the number of Kraus operators, the spectral gap becomes the gap of the quantum operation (viewed as a linear map on density matrices), and the quantum operation is efficient whenever the classical walk and the quantum Fourier transform on G are efficient. This means that using classical constant-degree constant-gap families of Cayley expander graphs on e.g. the symmetric group, we can construct efficient families of quantum expanders.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have