Abstract

Noise rates in quantum computing experiments have dropped dramatically, but reliable qubits remain precious. Fault-tolerance schemes with minimal qubit overhead are therefore essential. We introduce fault-tolerant error-correction procedures that use only two extra qubits. The procedures are based on adding "flags" to catch the faults that can lead to correlated errors on the data. They work for various distance-three codes. In particular, our scheme allows one to test the ⟦5,1,3⟧ code, the smallest error-correcting code, using only seven qubits total. Our techniques also apply to the ⟦7,1,3⟧ and ⟦15,7,3⟧ Hamming codes, thus allowing us to protect seven encoded qubits on a device with only 17 physical qubits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.