Abstract

When it comes to imaging live tissue, short-wavelength infrared (SWIR) radiation penetrates farther and scatters less than more-traditional near-IR and visible light. But a lack of agents that fluoresce brightly in the SWIR region (about 1,000 to 2,000 nm) has impeded the development of this type of imaging in the body. Moungi G. Bawendi, Oliver T. Bruns, and Thomas S. Bischof of MIT and coworkers have now created quantum dots that could expand SWIR live imaging (Nat. Biomed. Eng. 2017, DOI: 10.1038/s41551-017-0056). They coated InAs cores with CdSe, CdS, CdSe-ZnSe, or CdS-ZnSe single or double layers and derivatized the resulting quantum dots with organic functional groups to customize them—for instance, to have long blood circulation times. The quantum dots emit SWIR radiation about an order of magnitude more strongly, are more stable, and have narrower and more tunable emission spectra than previous SWIR probes. In live imaging, the quantum dots

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call