Abstract
We are involved in a continuing series of experiments aimed at a complete description,in terms of morphology and quantitative topochemistry, of the time course of spatial distributions of physiologically important elements during excitation-contraction coupling (ECC) at different time intervals (fractions of msec) following electrical stimulation of single, intact frog skeletal muscle fibers. In this present study wg report such distributions for Ca after 1,2 and 3 min of electrical stimulation in the presence of 2x10-4 M ryanodine, an alkaloid that, in time, causes irreversible muscle contractures.Single, intact frog skeletal muscle fibers were quick-frozen, cryosectioned, freeze-substituted and in one case freeze-fractured. The freeze-dried cryosections were subjected to electron probe X-ray microanalysis (EPXMA) in a JEOL 1200EX analytical electron microscope equipped with a Tracor Northern X-ray detector and a fully quantitative imaging system. Both, 64/64 pixel images (ambient temp.), and small raster probes (cold stage,-115 °C) for better statistics, were obtained, each from the same section.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have