Abstract

The magnetic-based stress detection technology has a great application potential in the field of girth weld stress detection. However, this technology lacks an effective theoretical model as a scientific guide. Therefore, to investigate the quantitative relationship between the magnetic gradient signal and weld stress and quantitatively evaluate the stress status of girth welds. In this paper, a numerical simulation model of stress-induced magnetic signals of girth welds with unequal wall thickness (UWT) is first established. Then, the model is used to calculate and analyse the quantitative variation law of the magnetic gradient signal of the girth weld with stress and detection height. Moreover, a magnetic-based stress detection and risk evaluation method is established to assess the stress failure risk of girth welds with UWT, whose accuracy is experimentally validated. The results indicate that the residual strength ratio RSR exponentially reduces from 0.83 to 0.49 as the Gmax increases from 373 to 542 μT/m. Moreover, the goodness of fit of the experimental data based on this relationship mentioned above reaches 0.98. The magnetic signal also exhibits a decaying exponential trend with detection height (0.1 m–0.3 m) when the internal pressure varies within 3 MPa–9 MPa. The numerical range of the RSR of seven girth welds is 0.31–0.95, which shows good agreement with the contact inspection results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call