Abstract

Accurate, 3D full-field measurements at the micron-level are of interest in a wide range of applications, including both facilitation of mechanical experiments at reduced length scales and accurate profiling of specimen surfaces. Scanning electron microscope systems (SEMs) are a natural platform for acquiring high magnification images for stereo-reconstruction. In this work, an integrated methodology for accurate three-dimensional metric reconstruction and deformation measurements using single column SEM imaging systems is described. In these studies, the specimen stage is rotated in order to obtain stereo views of the specimen as it undergoes mechanical or thermal loading. Simulations and preliminary experimental studies at 300× demonstrate that (a) spatially-varying image distortions can be removed from images using a non-parametric distortion model, (b) the system can be reliably calibrated using distortion-corrected images of a planar object and grid at various orientations and (c) specimen rotation variability during the measurement phase can be controlled so that baseline strain errors are within the range of ±150 µe. Benchmark rigid body motion experiments using calibrated SEM views demonstrate that all components of strain in the reconstructed object have a mean value around O(10−4) and a random spatial distribution with standard deviation ≈ 300 micro-strain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.