Abstract
We prove the following quantitative form of a classical theorem of Steintiz: Letm be sufficiently large. If the convex hull of a subsetS of Euclideand-space contains a unit ball centered on the origin, then there is a subset ofS with at mostm points whose convex hull contains a solid ball also centered on the origin and havingresidual radius $$1 - 3d\left( {\frac{{2d^2 }}{m}} \right)^{2/(d - 1)} .$$ The casem=2d was first considered by Baranyet al. [1]. We also show an upper bound on the achievable radius: the residual radius must be less than $$1 - \frac{1}{{17}}\left( {\frac{{2d^2 }}{m}} \right)^{2/(d - 1)} .$$ These results have applications in the problem of computing the so-calledclosure grasps by anm-fingered robot hand. The above quantitative form of Steinitz's theorem gives a notion ofefficiency for closure grasps. The theorem also gives rise to some new problems in computational geometry. We present some efficient algorithms for these problems, especially in the two-dimensional case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.