Abstract
Schmidt's game is generally used to deduce qualitative information about the Hausdorff dimensions of fractal sets and their intersections. However, one can also ask about quantitative versions of the properties of winning sets. In this paper we show that such quantitative information has applications to various questions including: * What is the maximal length of an arithmetic progression on the middle $\epsilon$ Cantor set? * What is the smallest $n$ such that there is some element of the ternary Cantor set whose continued fraction partial quotients are all $\leq n$? * What is the Hausdorff dimension of the set of $\epsilon$-badly approximable numbers on the Cantor set? We show that a variant of Schmidt's game known as the $potential$ $game$ is capable of providing better bounds on the answers to these questions than the classical Schmidt's game. We also use the potential game to provide a new proof of an important lemma in the classical proof of the existence of Hall's Ray.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.