Abstract

A class of ultrametric Cantor sets (C, du) introduced recently (S. Raut and D. P. Datta, Fractals 17, 45–52 (2009)) is shown to enjoy some novel properties. The ultrametric du is defined using the concept of relative infinitesimals and an inversion rule. The associated (infinitesimal) valuation which turns out to be both scale and reparametrization invariant, is identified with the Cantor function associated with a Cantor set \( \tilde C \) , where the relative infinitesimals are supposed to live in. These ultrametrics are both metrically as well as topologically inequivalent compared to the topology induced by the usual metric. Every point of the original Cantor set C is identified with the closure of the set of gaps of \( \tilde C \) . The increments on such an ultrametric space is accomplished by following the inversion rule. As a consequence, Cantor functions are reinterpreted as locally constant functions on these extended ultrametric spaces. An interesting phenomenon, called growth of measure, is studied on such an ultrametric space. Using the reparametrization invariance of the valuation it is shown how the scale factors of a Lebesgue measure zero Cantor set might get deformed leading to a deformed Cantor set with a positive measure. The definition of a new valuated exponent is introduced which is shown to yield the fatness exponent in the case of a positive measure (fat) Cantor set. However, the valuated exponent can also be used to distinguish Cantor sets with identical Hausdorff dimension and thickness. A class of Cantor sets with Hausdorff dimension log3 2 and thickness 1 are constructed explicitly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call