Abstract

AbstractQuantitative physicochemical analysis (QPCA) enables the determination of the stoichiometric compositions and physicochemical parameters of species in equilibrium systems proceeding from the composition-property dependencies. The paper discusses modifications to the routine QPCA procedures required to characterize properties of reagents fixed on surfaces of silica-organic hybrid materials. The cooperative effects and the energetic heterogeneity of fixed reagents are especially important in this context. It follows that the main peculiarities of silica surfaces chemically modified by aliphatic amines are (a) the pronounced energetic heterogeneity of reagents caused by the non-random surface topography, (b) the decrease of the bacisity of amines induced by their interactions with residual surface silanols, and (c) the expressed sensibility of reactions in the near-surface layer to the state of its hydration. The interaction of grafted organic bases with metal ions results in the preferred formation ofbismetal-ligand coordination compounds. Stability constants of complexes are decreased as a consequence of fixation and depend on not only donor but also acceptor ability of a solvent. Also, the denticity of polydentate ligands may decrease as a result of grafting. The changes of protolytic and complexing properties in the case of grafting of weak acids and phosphorus-containing complexons are due to their interactions with other surface groups and the influence of hydration effects in the near-surface layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.