Abstract

The development and application of a combined sample extraction and immunoassay protocol for the quantification of polyaromatic hydrocarbons (PAHs) in transformer oils is reported. Tests were performed on 12 different used transformer oils from three major manufacturers. The removal of matrix interferents was achieved by loading oil fractions onto silica solid phase extraction cartridges and eluting with non-polar solvent prior to evaporation and reconstitution in a more polar medium. Extracts were immunoassayed using two commercially available PAH test kits either having broad specificity towards priority PAHs or enhanced binding specificity toward more carcinogenic PAHs. The total and carcinogenic PAH test kits yielded PAH levels in the oil extracts 5.86-fold and 126-fold lower than the industry-standard IP346 method. The latter method, widely used by the industry, since it correlates with biological carcinogenicity tests, grossly over-estimates PAH levels in oils since it is a non-specific gravimetric solvent extraction approach. The assay was found to be unaffected by the extract sample matrix and was capable of determining PAHs at the nanogram per millilitre level. The assay protocol was simple, low-cost and rapid (<2 h) and equally amenable to operation at remote sites or high-throughput sample screening. The binding specificity of the total anti-PAH antibody was examined by preparing and loading an anti-PAH immunosorbent with oil, prior to solvent displacement of antibody-bound compounds and by gas chromatography (GC)–mass spectrometry (MS) analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.