Abstract
Dependable and sensitive glucose (Glu) testing in foodstuff and blood serum is highly desirable to prevent and treat diabetes. Electrochemical quantification of Glu has attracted great interests due to the advantages, including simple operation, higher sensitivity, easy miniaturization, ease of on-site and wearable detection as well as fast response. High costs and environmental dependence of enzymes pose a challenge to the electrochemical enzymatic biosensors. Nonenzymatic electrochemical Glu sensors are urgently needed to aid the Glu detection in human serum and food samples. To fabricate flexible Glu electrochemical sensors, designing suitable electrode substrate and efficient electrocatalyst is of paramount significance. Herein, the porous patterned laser-induced graphene (LIG) was fabricated on polyimide substrates through an efficient laser-inducing technology, and then used directly as the electrode substrate. Electrochemical deposition of NiCo layered double hydroxide (LDH) nanoflakes on the LIG surface was then conducted to achieve NiCo-LDH/LIG electrode as a Glu sensor. Under optimal conditions, this sensor displays a low detection limit of 0.05 μM. Two sets of broad detection linear ranges were found to be from 0.5 to 270 μM and from 0.27 to 3.6 mM, with high sensitivities of 9.750 μA μM−1 cm−2 and 3.760 μA μM−1 cm−2, respectively. The enhanced performance was ascribed to the cooperative action of NiCo-LDH and LIG, in which porous LIG provides extraordinary electroconductibility and a high surface area, while NiCo-LDH offers numerous exposed active sites and outstanding electrocatalytic performance. Practical application was further verified during the Glu detection in human serum and food samples. This research confirms that the NiCo-LDH/LIG composite is a prospective electrode for high-performance Glu sensor and provides a way of developing nonenzymatic electrochemical sensors to analyze the Glu in human serum and food samples, opening new avenues in electrochemical sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.