Abstract

ObjectivesBronchial thermoplasty (BT) can be considered in the treatment of severe asthma to reduce airway smooth muscle mass and bronchoconstriction. We hypothesized that BT may thus have long-term effects on airway dimensions and air-trapping detectable by quantitative computed tomography (QCT). MethodsPaired in- and expiratory CT and inspiratory CT were acquired in 17 patients with severe asthma before and up to two years after bronchial thermoplasty and in 11 additional conservatively treated patients with serve asthma, respectively. A fully automatic software calculated the airways metrics for wall thickness (WT), wall percentage (WP), lumen area (LA) and total diameter (TD). Furthermore, lung air-trapping was quantified by determining the quotient of mean lung attenuation in expiration vs. inspiration (E/I MLA) and relative volume change in the Hounsfield interval −950 to −856 in expiration to inspiration (RVC856-950) in a generation- and lobe-based approach, respectively. ResultsBT reduced WT for the combined analysis of the 2nd–7th airway generation significantly by 0.06 mm (p = 0.026) and WP by 2.05% (p < 0.001), whereas LA and TD did not change significantly (p = 0.147, p = 0.706). No significant changes were found in the control group. Furthermore, E/I MLA and RVC856-950 decreased significantly after BT by 12.65% and 1.77% (p < 0.001), respectively. ConclusionBT significantly reduced airway narrowing and air-trapping in patients with severe asthma. This can be interpreted as direct therapeutic effects caused by a reduction in airway-smooth muscle mass and changes in innervation. A reduction in air-trapping indicates an influence on more peripheral airways not directly treated by the BT procedure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call