Abstract

Many materials exhibit phase transitions at which both the electronic properties and the crystal structure change. Some authors have argued that the change in electronic order is primary, with the lattice distortion a relatively minor side-effect, and others have argued that the lattice distortions play an essential role in the energetics of the transition. In this paper, we introduce a formalism that resolves this long-standing problem. The methodology works with any electronic structure method that produces solutions of the equation of state determining the electronic order parameter as a function of lattice distortion. We use the formalism to settle the question of the physics of the metal–insulator transitions in the rare-earth perovskite nickelates (RNiO3) and Ruddlesden–Popper calcium ruthenates (Ca2RuO4) in bulk, heterostructure, and epitaxially strained thin film forms, finding that electron-lattice coupling is key to stabilizing the insulating state in both classes of materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call