Abstract

Unconventional superconductivity often couples to other electronic orders in a cooperative or competing fashion. Identifying external stimuli that tune between these two limits is of fundamental interest. Here, we show that strain perpendicular to the copper-oxide planes couples directly to the competing interaction between charge stripe order and superconductivity in La1.88Sr0.12CuO4 (LSCO). Compressive c-axis pressure amplifies stripe order within the superconducting state, while having no impact on the normal state. By contrast, strain dramatically diminishes the magnetic field enhancement of stripe order in the superconducting state. These results suggest that c-axis strain acts as tuning parameter of the competing interaction between charge stripe order and superconductivity. This interpretation implies a uniaxial pressure-induced ground state in which the competition between charge order and superconductivity is reduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.