Abstract

In this work, we investigated the electronic structures and magnetic properties of the GdBiTe3 alloy employing a first-principles all-electron density-functional approach, aiming to understand the magnetic phase stability and electronic structure dependences on the exchange correlation potential and the strain. The results show that the ferromagnetic phase is energetically more stable over the paramagnetic phase and the metal–insulator phase transition occurs upon the lattice distortion via the strain along the perpendicular c direction, which is not influenced by the strength of correlation energy introduced to describe the localized f orbitals. Thermoelectric transport properties are also investigated to reveal that the compressive strain markedly enhances the Seebeck coefficient, which is reduced in comparison with the Bismuth telluride due to the Gd doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call