Abstract
Excitations of individual and coupled spins on superconductors provide a platform to study quantum spin impurity models as well as a pathway toward realizing topological quantum computing. Here, we characterize, using ultralow temperature scanning tunneling microscopy/spectroscopy, the Yu-Shiba-Rusinov (YSR) states of individual manganese phthalocyanine molecules with high spin on an ultrathin lead film in variable transverse magnetic field. We observe two types of YSR excitations, depending on the adsorption geometry. Using a zero-bandwidth model, we detail the role of the magnetic anisotropy, spin-spin exchange, and Kondo exchange. We illustrate that one molecular type can be treated as an individual spin, whereas the other type is best described by a coupled spin system. Using the field dependence of the YSR excitations combined with modeling, we describe the quantum phase of each excitation type. These results provide an insight into the quantum nature of YSR excitations in magnetic field and a platform to study spin impurity models on superconductors in magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.