Abstract

The DC photocurrent can detect the topology and geometry of quantum materials without inversion symmetry. Herein, we propose that the DC shot noise (DSN), as the fluctuation of photocurrent operator, can also be a diagnostic of quantum materials. Particularly, we develop the quantum theory for DSNs in gapped systems and identify the shift and injection DSNs by dividing the second-order photocurrent operator into off-diagonal and diagonal contributions, respectively. Remarkably, we find that the DSNs can not be forbidden by inversion symmetry, while the constraint from time-reversal symmetry depends on the polarization of light. Furthermore, we show that the DSNs also encode the geometrical information of Bloch electrons, such as the Berry curvature and the quantum metric. Finally, guided by symmetry, we apply our theory to evaluate the DSNs in monolayer GeS and bilayer MoS2 with and without inversion symmetry and find that the DSNs can be larger in centrosymmetric phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.