Abstract
The complete geometry of quantum states in parameter space is characterized by the quantum geometric tensor, which contains the quantum metric and Berry curvature as the real and imaginary parts, respectively. When the quantum states are degenerate, the quantum metric and Berry curvature take non-Abelian forms. The non-Abelian (Abelian) Berry curvature and Abelian quantum metric have been experimentally measured. However, an experimentally feasible scheme to extract all the components of the non-Abelian quantum metric tensor is still lacking. Here we propose a generic protocol to directly extract the non-Abelian quantum metric tensor in arbitrary degenerate quantum states in any dimensional parameter space, based on measuring the transition probabilities after parameter quenches. Furthermore, we show that the non-Abelian quantum metric can be measured to obtain the real Chern number of a generalized Dirac monopole and the second Chern number of a Yang monopole, which can be simulated in three and five-dimensional parameter space of artificial quantum systems, respectively. We also demonstrate the feasibility of our quench scheme for these two applications with numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.