Abstract

Connectivity is key to understanding neural circuit computations. However, estimating in vivo connectivity using recording of activity alone is challenging. Issues include common input and bias errors in inference, and limited temporal resolution due to large data requirements. Perturbations (e.g. stimulation) can improve inference accuracy and accelerate estimation. However, optimal stimulation protocols for rapid network estimation are not yet established. Here, we use neural network simulations to identify stimulation protocols that minimize connectivity inference errors when using generalized linear model inference. We find that stimulation parameters that balance excitatory and inhibitory activity minimize inference error. We also show that pairing optimized stimulation with adaptive protocols that choose neurons to stimulate via Bayesian inference may ultimately enable rapid network inference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.