Abstract

Nitrogen is an essential element for plant growth and development; however, application of nitrogen (N)-based fertilizers comes with a high environmental cost. This includes the energy required for production, volatilization from fields, and runoff or leaching to waterways triggering algal blooms. As such, a key goal in plant breeding programs is to develop varieties that maintain yield while requiring less fertilization. Central to this goal is understanding how roots take up nitrogen and finding traits that represent improvements in the net uptake. Maize, one of the most widely produced crops in the world, has seminal, crown, and brace root types, each under independent developmental control. Recent evidence suggests that these independent developmental patterns may result in different nutrient uptake characteristics. As such, understanding the uptake dynamics of each root type under different environmental conditions is an essential aspect for the selection of new maize varieties. A key method for tracking nitrogen uptake is the use of the 15N stable isotope, which is naturally less abundant than the main 14N isotope. This method involves replacing the 14N in nutrient solutions with 15N, exogenously providing it to the plant tissues (roots in this case), and then measuring the 15N content of the tissues after a fixed amount of time. Here, we provide a brief overview of nitrogen uptake and remobilization in maize, and discuss current techniques for measuring nutrient uptake, with a focus on methods using stable isotopes of nitrogen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call