Abstract

The use of stable isotopes in diet analysis usually relies on the different photosynthetic pathways of C3 and C4 plants, and the resulting difference in carbon isotope signature. In the Arctic, however, plant species are exclusively C3, and carbon isotopes alone are therefore not suitable for studying arctic herbivore diets. In this study, we examined the potential of both stable carbon and nitrogen isotopes to reconstruct the diet of an arctic herbivore, here the muskox ( Ovibos moschatus (Zimmermann, 1780)), in northeast Greenland. The isotope composition of plant communities and functional plant groups was compared with those of muskox faeces and shed wool, as this is a noninvasive approach to obtain dietary information on different temporal scales. Plants with different root mycorrhizal status were found to have different δ15N values, whereas differences in δ13C, as expected, were less distinct. As a result, our examination mainly relied on stable nitrogen isotopes. The interpretation of stable isotopes from faeces was difficult because of the large uncertainty in diet–faeces fractionation, whereas isotope signatures from wool suggested that the muskox summer diet consists of around 80% graminoids and up to 20% willows. In conclusion, the diet composition of an arctic herbivore can indeed be inferred from stable isotopes in arctic areas, despite the lack of C4 plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call