Abstract

PurposeQuantifying intra-fractional six-degree-of-freedom (6DoF) residual errors or motion from approved patient setups is necessary for accurate beam delivery in spine stereotactic body radiotherapy. However, previously reported errors were not acquired during beam delivery. Therefore, we aimed to quantify the 6DoF residual errors and motions during arc beam delivery using a concurrent cone-beam computed tomography (CBCT) imaging technique, intra-irradiation CBCT. MethodsConsecutive 15 patients, 19 plans for various treatment sites, and 199 CBCT images were analyzed. Pre-irradiation CBCT was performed to verify shifts from the initial patient setup using the ExacTrac system. During beam delivery by two or three co-planar full-arc rotations, CBCT imaging was performed concurrently. Subsequently, an intra-irradiation CBCT image was reconstructed. Pre- and intra-irradiation CBCT images were rigidly registered to a planning CT image based on the bone to quantify 6DoF residual errors. Results6DoF residual errors quantified using pre- and intra-irradiation CBCTs were within 2.0 mm/2.0°, except for one measurement. The mean elapsed time (mean ± standard deviation [min:sec]) after pre-irradiation CBCT to the end of the last arc beam delivery was 6:08 ± 1:25 and 7:54 ± 2:14 for the 2- and 3-arc plans, respectively. Root mean squares of residual errors for several directions showed significant differences; however, they were within 1.0 mm/1.0°. Time-dependent analysis revealed that the residual errors tended to increase with elapsed time. ConclusionThe errors represent the optimal intra-fractional error compared with those acquired using the pre-, inter-beam, and post-6DoF image guidance and can be acquired within a standard treatment timeslot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.