Abstract

PurposeThis study aims to elucidate the dependence of the flat-panel detector’s response on the linear energy transfer (LET) and evaluate the practical viability of employing flat-panel detectors in proton dosimetry applications through LET-dependent correction factors. MethodsThe study assessed the flat-panel detector’s response across varying depths using solid water and distinct 100, 150, and 200 MeV proton beams by comparing the flat-panel readings against reference doses measured with an ionization chamber. A Monte Carlo code was used to derive LET values, and an LET-dependent response correction factor was determined based on the ratio of the uncorrected flat-panel dose to the ionization chamber dose. The implications of this under-response correction were validated by applying it to a measurement involving a spread-out Bragg peak (SOBP), followed by a comparative analysis against doses calculated using the Monte Carlo code and MatriXX ONE measurement. ResultsThe association between LET and the flat-panel detector’s under-response displayed a positive correlation that intensified with increasing LET values. Notably, with a 10 keV/µm LET value, the detector’s under-response reached 50 %, while the measurement points in the SOBP demonstrated under-response greater than 20 %. However, post-correction, the adjusted flat-panel profile closely aligned with the Monte Carlo profile, yielding a 2-dimensional 3 %/3mm gamma passing rate of 100 % at various verification depths. ConclusionThis study successfully defined the link between LET and the responsiveness of flat-panel detectors for proton dosimetric measurements and established a foundational framework for integrating flat-panel detectors in clinical proton dosimetry applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.