Abstract

Gastric motility has an essential role in mixing and the breakdown of ingested food. It can affect the digestion process and the efficacy of the orally administered drugs. There are several methods to image, measure, and quantify gastric motility. MRI has been shown to be a suitable non-invasive method for gastric motility imaging. However, in most studies, gadolinium-based agents have been used as an oral contrast agent, making it less desirable for general usage. In this study, MRI scans were performed on 4 healthy volunteers, where pineapple juice was used as a natural contrast agent for imaging gastric motility. A novel method was developed to automatically estimate a curved centerline of the stomach. The centerline was used as a reference to quantify contraction magnitudes. The results were visualized as contraction magnitude-maps. The mean speed of each contraction wave on the lesser and greater curvatures of the stomach was calculated, and the variation of the speeds in 4 regions of the stomach were quantified. There were 3-4 contraction waves simultaneously present in the stomach for all cases. The mean speed of all contractions was 2.4±0.9 mm/s, and was in agreement with previous gastric motility studies. The propagation speed of the contractions in the greater curvature was higher in comparison to the lesser curvature (2.9±0.8 vs 1.9±0.5 mm/s); however, the speeds were more similar near to the pylorus. This study shows the feasibility of using pineapple juice as a natural oral contrast agent for the MRI measurements of gastric motility. Also, it demonstrated the viability of the proposed method for automatic curved centerline estimation, which enables practical clinical translation.Clinical Relevance- MRI is able to non-invasively provide dynamic images of the contraction patterns of the stomach, providing a novel clinical tool for assessing functional motility disorders. The use of a natural oral contrast agent such as pineapple juice, as opposed to a gadolinium-based contrast agent, makes MRI more widely accessible. Our semi-automated methods for quantifying contraction magnitude and speed will streamline analysis and clinical diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call