Abstract

In this paper the notion of a quadratic automaton transformation is defined and studied. The automata considered transform infinite input sequences of elements from a finite commutative ring with identity to infinite output sequences. Results extending the linear automaton transformation theory of A. Nerode are derived and two distinct approaches to machine realization arise depending upon whether 2 is invertible in the base ring or not. Such a naturally occurring quadratic map as the AND function of elementary switching theory is easily realized in this setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.