Abstract

In this paper we investigate the parameterized complexity of counting and detecting small patterns in unit disk graphs: Given an n-vertex unit disk graph G with an embedding of ply p (i.e. G is an intersection graph of closed unit disks, and each point is contained in at most p disks) and a k-vertex unit disk graph P, count the number of (induced) copies of P in G. For general patterns P, we give an 2O(pk/log⁡k)nO(1) time algorithm for counting pattern occurrences. We show this is tight, even for ply p=2: any 2o(n/log⁡n)nO(1) time algorithm violates the Exponential Time Hypothesis (ETH). Our approach combines tools developed for planar subgraph isomorphism such as ‘efficient inclusion-exclusion’ from [Nederlof STOC'20], and ‘isomorphisms checks’ from [Bodlaender et al. ICALP'16] with a different separator hierarchy and a new bound on the number of non-isomorphic separations tailored for unit disk graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.