Abstract

A cooperating multi-pushdown system consists of a tuple of pushdown systems that can delegate the execution of recursive procedures to sub-tuples; control returns to the calling tuple once all sub-tuples finished their task. This allows the concurrent execution since disjoint sub-tuples can perform their task independently. Because of the concrete form of recursive descent into sub-tuples, the content of the multi-pushdown does not form an arbitrary tuple of words, but can be understood as a Mazurkiewicz trace. For such systems, we prove that the backwards reachability relation efficiently preserves recognizability, generalizing a result and proof technique by Bouajjani et al. for single-pushdown systems. It follows that the reachability relation is decidable for cooperating multi-pushdown systems in polynomial time and the same holds, e.g., for safety and liveness properties given by recognizable sets of configurations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.