Abstract
Synthetic aperture radar (SAR) is a powerful tool for monitoring sea states in terms of the significant wave height (SWH). Regarding the specific wave mode, to date, the previous empirical models for estimating SWH from SAR data rely on single polarization. In the emerging deep learning era, few published quad-polarized SAR SWH retrieval algorithms have been based on machine learning technique, and whether quad-polarimetry improves the skill of wave height estimation remains a question. Here we propose a deep residual convolutional neural network-based SAR SWH retrieval algorithm in quad-polarization. By collocating WaveWatch III sea state hindcasts and all available archives of quad-polarized Chinese Gaofen-3 SAR imagettes in wave mode, a database with approximately 30,000 matchups was employed to establish our deeply-learned network. The GaoFen-3 significant wave height retrievals were validated against the hindcast dataset independent of training along with altimeter observations. The result of good consistency in terms of a root mean square error of 0.32 m (under sea state conditions of approximately 0.5–7.0 m) outperforms the existing Gaofen-3 wave height retrieval algorithms. Additionally, this paper introduces a discussion about the contribution of polarizations by comparing SWH derived from single-, dual- and quad-polarized deep convolutional neural networks. Single-polarized Gaofen-3 SAR data are found to be sufficient to provide accurate estimates compared to quad-polarization via a deep learning model under moderate sea conditions. Exploitation of SAR quad-polarimetry information will improve SAR wave height retrievals under high sea conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.