Abstract

Respiration-induced signals contain a clinically significant information. It could be obtained utilizing both direct and indirect methods. ECG-Derived Respiration (EDR) method is the latter one. However, in this case, two approaches could be distinguished. First one is based on determining changes in the morphology of QRS complexes while the second one is based on the Respiratory Sinus Arrhythmia (RSA) mechanism. The former approach is discussed in the paper. The basic properties of QRS morphology-based EDR signal were evaluated by means of simulations performed using a developed FEM model and appropriate experiments. In effect, basing on changes of the leads’ voltages induced by a heart translation or rotation, or by both mechanisms undergoing simultaneously, the sensitivity-like surfaces and the synthetic EDR signals were obtained. A very good agreement of the experimental and simulation results was achieved. The QRS morphology-based signal’s properties strongly depend on geometrical relation of the used lead to dominating direction of the heart translation, its rotation, and on personal relation between these two mechanisms. The conclusions presented should be taken into account especially when developing or using QRS morphology-based approach in respiratory monitoring systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.