Abstract

<p style='text-indent:20px;'>We define the notions of impulsive evolution processes and their pullback attractors, and exhibit conditions under which a given impulsive evolution process has a pullback attractor. We apply our results to a nonautonomous ordinary differential equation describing an integrate-and-fire model of neuron membrane, as well as to a heat equation with nonautonomous impulse and a nonautonomous 2D Navier-Stokes equation. Finally, we introduce the notion of tube conditions to impulsive evolution processes, and use them as an alternative way to obtain pullback attractors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.