Abstract
In order to determine the dynamics of nonautonomous equations both their forward and pullback behavior need to be understood. For this reason we provide sufficient criteria for the existence of such attracting invariant sets in a general setting of nonautonomous difference equations in metric spaces. In addition it is shown that both forward and pullback attractors, as well as forward limit sets persist and that the latter two notions even converge under perturbation.As concrete application, we study integrodifference equations over the continuous functions under spatial discretization of collocation type. Integrodifference equation and Pullback attractor and Forward attractor and Urysohn operator
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.