Abstract
Stochastic multi-criteria acceptability analysis (SMAA) is a multi-criteria decision support method for multiple decision-makers (DMs) in discrete problems. SMAA does not require explicit or implicit preference information from the DMs. Instead, the method is based on exploring the weight space in order to describe the valuations that would make each alternative the preferred one. Partial preference information can be represented in the weight space analysis through weight distributions. In this paper we compare two variants of the SMAA method using randomly generated test problems with 2–12 criteria and 4–12 alternatives. In the original SMAA, a utility or value function models the DMs' preference structure, and the inaccuracy or uncertainty of the criteria is represented by probability distributions. In SMAA-3, ELECTRE III-type pseudo-criteria are used instead. Both methods compute for each alternative an acceptability index measuring the variety of different valuations that supports this alternative, and a central weight vector representing the typical valuations resulting in this decision. We seek answers to three questions: (1) how similar are the results provided by the decision models, (2) what kind of systematic differences exists between the models, and (3) how could one select indifference and preference thresholds of the pseudo-criteria model to match a utility model with given probability distributions?
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.