Abstract

. The method is based on Rockafellar’s proximal point algorithm and a cutting-plane technique. At each step, we use an approximate proximal point pa(xk) of xk to define a vk∈∂ekf(pa(xk)) with ek≤α∥vk∥, where α is a constant. The method monitors the reduction in the value of ∥vk∥ to identify when a line search on f should be used. The quasi-Newton step is used to reduce the value of ∥vk∥. Without the differentiability of f, the method converges globally and the rate of convergence is Q-linear. Superlinear convergence is also discussed to extend the characterization result of Dennis and More. Numerical results show the good performance of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.