Abstract
. The method is based on Rockafellar’s proximal point algorithm and a cutting-plane technique. At each step, we use an approximate proximal point pa(xk) of xk to define a vk∈∂ekf(pa(xk)) with ek≤α∥vk∥, where α is a constant. The method monitors the reduction in the value of ∥vk∥ to identify when a line search on f should be used. The quasi-Newton step is used to reduce the value of ∥vk∥. Without the differentiability of f, the method converges globally and the rate of convergence is Q-linear. Superlinear convergence is also discussed to extend the characterization result of Dennis and More. Numerical results show the good performance of the method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.