Abstract

We propose a proximal Newton method for solving nondifferentiable convex optimization. This method combines the generalized Newton method with Rockafellar's proximal point algorithm. At each step, the proximal point is found approximately and the regularization matrix is preconditioned to overcome inexactness of this approximation. We show that such a preconditioning is possible within some accuracy and the second-order differentiability properties of the Moreau-Yosida regularization are invariant with respect to this preconditioning. Based upon these, superlinear convergence is established under a semismoothness condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.