Abstract

In this paper, we consider a proximal point algorithm (PPA) for solving monotone nonlinear complementarity problems (NCP). PPA generates a sequence by solving subproblems that are regularizations of the original problem. It is known that PPA has global and superlinear convergence properties under appropriate criteria for approximate solutions of subproblems. However, it is not always easy to solve subproblems or to check those criteria. In this paper, we adopt the generalized Newton method proposed by De Luca, Facchinei, and Kanzow to solve subproblems and adopt some NCP functions to check the criteria. Then we show that the PPA converges globally provided that the solution set of the problem is nonempty. Moreover, without assuming the local uniqueness of the solution, we show that the rate of convergence is superlinear in a genuine sense, provided that the limit point satisfies the strict complementarity condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.