Abstract

We address composite optimization problems, which consist in minimizing the sum of a smooth and a merely lower semicontinuous function, without any convexity assumptions. Numerical solutions of these problems can be obtained by proximal gradient methods, which often rely on a line search procedure as globalization mechanism. We consider an adaptive nonmonotone proximal gradient scheme based on an averaged merit function and establish asymptotic convergence guarantees under weak assumptions, delivering results on par with the monotone strategy. Global worst-case rates for the iterates and a stationarity measure are also derived. Finally, a numerical example indicates the potential of nonmonotonicity and spectral approximations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.